Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurol Sci ; 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520640

RESUMO

Awake craniotomy (AC) allows intraoperative brain mapping (ioBM) for maximum lesion resection while monitoring and preserving neurological function. Conventionally, language, visuospatial assessment, and motor functions are mapped, while the assessment of executive functions (EF) is uncommon. Impaired EF may lead to occupational, personal, and social limitations, thus, a compromised quality of life. A comprehensive literature search was conducted through Scopus, Medline, and Cochrane Library using a pre-defined search strategy. Articles were selected after duplicate removal, initial screening, and full-text assessment. The demographic details, ioBM techniques, intraoperative tasks, and their assessments, the extent of resection (EOR), post-op EF and neurocognitive status, and feasibility and potential adverse effects of the procedure were reviewed. The correlations of tumor locations with intraoperative EF deficits were also assessed. A total of 13 studies with intraoperative EF assessment of 351 patients were reviewed. Awake-asleep-awake protocol was most commonly used. Most studies performed ioBM using bipolar stimulation, with a frequency of 60 Hz, pulse durations ranging 1-2 ms, and intensity ranging 2-6 mA. Cognitive function was monitored with the Stroop task, spatial-2-back test, line-bisection test, trail-making-task, and digit-span tests. All studies reported similar or better EOR in patients with ioBM for EF. When comparing the neuropsychological outcomes of patients with ioBM of EF to those without it, all studies reported significantly better EF preservation in ioBM groups. Most authors reported EF mapping as a feasible tool to obtain satisfactory outcomes. Adverse effects included intraoperative seizures which were easily controlled. AC with ioBM of EF is a safe, effective, and feasible technique that allows satisfactory EOR and improved neurocognitive outcomes with minimal adverse effects.

2.
J Alzheimers Dis ; 90(2): 869-890, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189594

RESUMO

BACKGROUND: Amnestic mild cognitive impairment (aMCI), a prodromal phase of Alzheimer's disease (AD), is characterized by episodic memory dysfunction, but inhibitory deficits have also been commonly reported. Time of day (TOD) effects have been confirmed in 1) healthy aging on cognitive processes such as inhibitory control, and 2) on behavior in AD (termed the sundowning effect), but no such research has addressed aMCI. OBJECTIVE: The present study examined the impact of TOD on the behavioral and electrophysiological correlates of inhibition in 54 individuals with aMCI and 52 healthy controls (HCs), all of morning chronotype. METHODS: Participants were randomly assigned to complete two inhibition tasks (Go-NoGo and Flanker) during their optimal (morning) or non-optimal (evening) TOD, while electroencephalography was recorded. RESULTS: Both tasks elicited changes in N2 and P3 event-related potential (ERP) components, which commonly index inhibitory functioning. Analyses showed that the Go-NoGo difference in P3 amplitude was reduced in individuals with aMCI relative to HCs. Compared to HCs, the Flanker difference in P3 amplitude was also reduced and coincided with more errors in the aMCI group. Notably, these behavioral and ERP differences were exaggerated in the non-optimal TOD relative to the optimal TOD. CONCLUSION: Findings confirm the presence of inhibition deficits in aMCI and provide novel evidence of sundowning effects on inhibitory control in aMCI. Results reinforce the need to consider the influences of TOD in clinical assessments involving individuals with aMCI.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Delírio , Humanos , Testes Neuropsicológicos , Tempo de Reação/fisiologia , Disfunção Cognitiva/psicologia , Eletroencefalografia , Cognição
3.
Front Aging Neurosci ; 14: 821043, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360220

RESUMO

Time of day (TOD) influences on executive functions have been widely reported, with greater efficiency demonstrated at optimal relative to non-optimal TOD according to one's chronotype (i.e., synchrony effect). Older adults (OAs) show declines in inhibitory control and are more sensitive to the effects of circadian variation on executive functioning. To date, no studies have investigated the effects of TOD and aging on executive functioning using electrophysiological measures. The present study investigated the effects of aging and TOD on the neural correlates of inhibitory processing (N2 and P3) using event-related potentials (ERPs). Go-NoGo and Flanker tasks were administered to 52 OAs of morning chronotype and 51 younger adults (YAs) of afternoon-to-evening chronotype who were randomly assigned to morning or afternoon test sessions, with the optimal TOD for OAs in the morning and for YAs in the afternoon/evening. While behavioral results demonstrated no TOD effects, ERPs indicated synchrony effects. Both YAs and OAs showed greater modulation of Go-NoGo N2 and greater P3 amplitude during the non-optimal than optimal TOD, consistent with the synchrony effect. For the Flanker task, age differences in P3 amplitude were only apparent during the non-optimal TOD. These results suggest that processes associated with inhibitory control are differentially affected by TOD and aging, with age-related reductions in inhibitory efficiency during off-peak test times on measures of interference control. These findings highlight the sensitivity of ERPs to detect TOD effects in the absence of behavioral differences, confirm more pronounced TOD effects in OAs relative to YAs on ERP measures of interference control, and reinforce the need to assess and control for circadian typology in research studies.

4.
Neuroscience ; 485: 116-128, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35051530

RESUMO

Aging is associated with altered brain connectivity within the default mode network (DMN). Although research using functional magnetic resonance imaging has quantified age-related alterations in functional connectivity within this network during resting state, it is less clear how this may be reflected in electrophysiological measures, and how this relates to cognitive performance in older adults. The aim of this study was to quantify age differences in phase synchrony of the DMN during resting state, with particular focus on connectivity between the anterior node (i.e., medial prefrontal cortex, or mPFC) and other associated regions in this network. Electroencephalography was recorded from 55 younger adults (18-30 years, 28 females) and 34 older adults (64-88 years, 16 females) in two resting state conditions (eyes-open and -closed). Source-level functional connectivity was quantified using phase-locking value (PLV) with a spatial filter of six sources of interest, and were subjected to data-driven permutation testing between groups from 1 to 50 Hz. Older adults also completed tests of memory, language, executive functioning, and processing speed. Findings indicated decreased connectivity in the alpha2 range for older than younger adults between the mPFC and other DMN regions including the left angular gyrus and bilateral lateral temporal cortices, the latter of which were associated with lower performance in semantic fluency and executive functioning in older adults. Furthermore, greater PLV in theta and beta bands between the mPFC and posterior cingulate regions were found in older than younger adults. These results suggest age-related changes in DMN functional connectivity are non-uniform and frequency-dependent, and may reflect poorer performance in cognitive domains thought to decline with aging.


Assuntos
Envelhecimento Saudável , Idoso , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Rede de Modo Padrão , Eletroencefalografia , Feminino , Humanos , Imageamento por Ressonância Magnética , Vias Neurais/diagnóstico por imagem
5.
J Gerontol B Psychol Sci Soc Sci ; 77(1): 71-83, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33770153

RESUMO

OBJECTIVES: Amnestic mild cognitive impairment (aMCI), a prodromal stage of Alzheimer's disease and other dementias, is characterized by episodic memory impairment. Recent evidence has shown inhibitory control deficits in aMCI, but the extent of these deficits across inhibitory domains (i.e., response inhibition and interference control) and aMCI subtypes (i.e., single vs multiple domain) remains unclear. Few studies have included reaction time intraindividual variability (RT IIV) in these efforts. The aim of this study was to compare response inhibition and interference control between aMCI subtypes using measures of accuracy, mean RT, and RT IIV. METHODS: We report data from 34 individuals with single-domain aMCI (sdaMCI, 66-86 years), 20 individuals with multiple-domain aMCI (mdaMCI, 68-88 years), and 52 healthy controls (HC, 64-88 years) who completed tasks of response inhibition (Go-NoGo) and interference control (Flanker). Group differences in accuracy, mean RT, and RT IIV were examined for both tasks. RESULTS: Individuals with mdaMCI had higher RT IIV than the other groups on both tasks. In RT IIV, we observed an interference control deficit in mdaMCI and sdaMCI relative to healthy controls, a finding not observed through accuracy or mean RT. DISCUSSION: RT IIV may detect subtle differences in inhibition deficits between aMCI subtypes that may not be evident with conventional behavioral measures. Findings support the supplementary use of RT IIV when assessing early executive function deficits.


Assuntos
Envelhecimento/fisiologia , Amnésia/fisiopatologia , Disfunção Cognitiva/fisiopatologia , Função Executiva/fisiologia , Inibição Psicológica , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...